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This work reports a study on the effects of several chemical pretreatment parameters such as solvent types, solvent concentration, liquid to solid ratio (LSR), temperature, time and sonication amplitude on total reducing sugar (TRS) production of nipah fruit husks using ultrasonic method. The pretreatment was carried out using hydrochloric acid, sulphuric acid, and citric acid for acid pretreatment; meanwhile sodium hydroxide and calcium hydroxide were used for alkaline pretreatment. Total reducing sugar produced from each pretreatment was estimated using DNS method. Screening results shown that nipah palm fruit husks pretreated with 40% w/v of sodium hydroxide, 10:1 of LSR, 50% of sonication amplitude at 80°C for 20 minutes showed the highest total reducing sugar (TRS), 78.79±1.0887 g/L. In fact, characterization of untreated and pretreated nipah fruit husks was done using scanning electron microscope (SEM) to observe the effect of each pretreatment on the morphology of the samples. Through SEM, nipah fruit husk pretreated with sodium hydroxide showed the greatest cell disruption in the structure which indicates that more fermentable sugar was released and thus promotes highest TRS yield.   
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1.	Introduction 

*Bioethanol can be divided into first generation bioethanol (FGB) and second generation bioethanol (SGB). FGB originated from edible sources such as sugarcane and corns. However, it had disadvantages as the feedstock originated from food stream (Zheng et al., 2009). Thus, SGB overcomes the conflict between food and fuel as it is produced from non-edible source, lignocellulose biomass which includes hard/soft wood, agricultural wastes, municipal solid wastes and cellulose wastes (Zheng et al., 2009; Verma et al., 2011). Recently, the conversion of lignocellulosic biomass into biofuels had gained the attention of the researchers all over the world. This is due to the necessity of having energy sources which are inexpensive, ecofriendly, renewable and able to replace the conventional fossil fuels. Lignocellulose biomass composed of cellulose, hemicellulose, lignin, extractives and ashes (Taherzadeh and Karimi, 2007). The long chain polymers which are cellulose and hemicellulose can be hydrolyzed into fermentable sugars (Chaturvedi 
                                                 * Corresponding Author.  Email Address: helya@unimap.edu.my (N. Kamaludin) 

and Verma, 2013). Fermentable sugars such as pentoses (C5) and hexoses (C6) will be utilized in the production of bioethanol. Lignin acts as barriers that prevent the degradation of cellulose and hemicellulose and cellulose by fungi and bacteria. It also hinders the hydrolysis of cellulose and hemicellulose. Thus, pretreatment is required to reduce the crystallinity of the lignocellulose and to remove the lignin allowing hydrolysis of fermentable sugars to take place (Asli et al., 2013). A number of pretreatment methods are available which includes physical pretreatments (mechanical comminution, steam explosion, hot water), chemical pretreatment (acid, alkali, ionic liquids), biological pretreatment (enzymatic, microorganism) etc. (Sun and Cheng, 2002). Each of these pretreatments has their advantages and disadvantages and their suitability are depending on the type of lignocellulose biomass used as feedstock (Alvira et al., 2010). The present work applied acid and alkali pretreatment on the nipah husk for the bioethanol production. The pretreatment was facilitated with ultrasonic wave. The use of ultrasound were previously used to enhance various processes and provided another options to conventional 
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